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Equations de Maxwell
Domaine temporel

∇ × E t, r( ) = – ∂B t, r( )
∂t

∇⋅ D t, r( ) = ρ t,r( )

∇ × H t, r( ) = ∂D t, r( )
∂t

+ J t, r( ) ∇ ⋅ B t, r( ) = 0

E t, r( )

D t, r( )
ρ t,r( )

champ électrique
champ de déplacement
densité de charge

H t, r( )

B t, r( )

J t, r( )

champ magnétique
champ d’induction
densité de courant
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Equations de Maxwell
Domaine temporel

( ) ( ),
, 0

t
t

t
∂ρ
∂

+∇ ⋅ =
r

J r

On obtient l'équation de continuité en prenant la divergence
de la 3ème équation et en utilisant la 2ème:
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Domaine fréquentiel: phaseurs

t

u t, z0( )

1
ω

π
2

– ϕ z 0( )



( )0

1
2

zπ ϕ
ω
 − 
 

( ) ( ) ( ), 2 cos

2

u t z U z t z

f

ω ϕ

ω π

 = + 
=

mais nous pouvons aussi écrire ( ) ( )

( ) ( ) ( )

, Re 2 j t

j z

u t z U z e

U z U z e

ω

ϕ

 =  

=et puisque [ ] *Re
2

z zz +
=

( ) ( ) ( )1, *
2

j t j tu t z U z e U z eω ω− = + 
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Domaine fréquentiel: phaseurs

( ) ( ) ( ),
Re 2 Re 2

j t
ju t u deU z j U z e

t dt

ω
ωω

∂    = =   ∂  

La dérivation par rapport au temps, dans le domaine 
temporel, correspond à une multiplication par jω dans 
le domaine fréquentiel
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Domaine fréquentiel
Valeur moyenne de u2, énergie électrique moyenne

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2 2

1 , ,

1 * *
2

1 * 2 *
2

t T

t
t T

j t j t j t j t

t
t T

j t j t

t

u t z u t z dt
T

U z e U z e U z e U z e dt
T

U z e U z e U z U z dt
T

ω ω ω ω

ω ω

+

+
− −

+
−

=

   + +   

 = + + 

∫

∫

∫

mais 2 2 2 21 1 0
2 2

t Tt T
j t j t j t j t

t t

e dt e e e
j j

ω ω ω ω

ω ω

++
± ± ± ± = ± = ± − = ∫ car ωT=2π

il reste donc : ( ) ( ) ( ) ( ) 22 , *u t z U z U z U z= =
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Domaine fréquentiel
valeur moyenne de la puissance

dans la théorie des lignes de transmission, la puissance 
au temps t est donnée par ( ) ( ) ( ), , ,p t z u t z i t z=

La puissance moyenne est donc donnée par
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1, , ,

1 * *
2

1 1 * *
2 2

1 * *
2

t T

t
t T

j t j t j t j t

t
t T t T

j t j t

t t
t T

t

p t z u t z i t z dt
T

U z e U z e I z e I z e dt
T

U z I z e dt U z I z e dt
T T

U z I z U z I z dt
T

ω ω ω ω

ω ω

+

+
− −

+ +
−

+

=

   = + +   

= +

 + + 

∫

∫

∫ ∫

∫

Les 2 premières intégrales sont nulles, il reste donc
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, * * Re * Re

2
p t z U z I z U z I z U z I z S z P z     = + = ⋅ = =     
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Domaine fréquentiel: équations de Maxwell

les équations de Maxwell deviennent
( ) ( )
( ) ( ) ( )
( ) ( )
( ) 0

j

j

ω

ω

ρ

∇×Ε = −

∇× = +

∇⋅ =

∇ ⋅ =

r B r

H r D r J r

D r r

B r

et l'équation de continuité
( ) ( ) 0jωρ∇⋅ + =J r r



In
tro

du
ct

io
n 

au
x 

m
ic

ro
on

de
s 

et
 a

nt
en

ne
s

© A.K. Skrivervik    9

Changement de notation

A partir de ce slide, les phaseurs ne seront plus soulignés,
le contexte étant suffisant pour déterminer leur qualité de 
phaseur
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Milieux linéaires et isotropes

Dans un milieu linéaire et isotrope, nous avons vu que
( ) ( )
( ) ( )
( ) ( )

ε

µ

σ

=

=

=

D r E r

B r H r

J r E r

Ce sont les relations constitutives
ε et µ sont en général complexes et définissent le milieu.
Leur parties imaginaires représentent les pertes dans le 
milieu. ' ''

' ''
j
j

ε ε ε
µ µ µ
= −
= −

Le signe "–" vient de la causalité 
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Propriétés électriques et magnétiques du vide

[ ]8
0

0 0

0
0

0

7
0

12
0

1  vitesse de la lumière dans le vide = 3 10 /

 impédance du vide 120

perméabilité du vide =4 10

permittivité du vide 8.854 10

c m s

Z

ε µ

µ π
ε

µ π

ε

−

−

= = ⋅

= = =

=

= = ⋅
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Milieux linéaires et isotropes

Finalement, on obtient

( ) ( )
( ) ( ) ( )

( ) ( )

( ) 0

j

j

ωµ

ωε

ρ
ε

∇× = −

∇× = +

∇⋅ =

∇ ⋅ =

E r H r

H r E r J r

E r r

H r
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Conditions aux limites

n(1)

(2)
Js

n est le vecteur unitaire
normal à la surface allant
du milieu 2 au milieu 1.
Js est un éventuel courant
de surface [A/m]

( )
( )

2 1

2 1

0

s

× − =

× − =

n E E

n H H J
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Energies électrique et magnétique

valeur moyenne de la densité d'énergie électrique:
* 3   /ew J mε  = ⋅  E E

valeur moyenne de la densité d'énergie magnétique:
* 3   /mw J mµ  = ⋅  H H

Vecteur de Poynting: valeur moyenne du flux de puissance
2* /S W m = ×  E H



In
tro

du
ct

io
n 

au
x 

m
ic

ro
on

de
s 

et
 a

nt
en

ne
s

© A.K. Skrivervik    15

Théorème de Poynting

En utilisant les équations de Maxwell, en intégrant sur 
un volume v entouré d'une surface s, on obtient le 
Théorème de Poynting

( )e m
s v v

ds j dv w w dvω⋅ + + = − ⋅∫ ∫ ∫S n J E
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Les potentiels: potentiel vecteur magnétique

Considérons l'équation de Maxwell sur l'induction magnétique

( ) 0∇⋅ =B r

or ( ) 0∇⋅∇× ≡A r

On peut donc écrire où A(r) est appelé le
vecteur potentiel mangétique. A(r)  n'est pas unique on pourrait 
le remplacer par où Φ est une fonction arbitraire

( ) ( )= ∇×B r A r

( ) ( )' = +∇ΦA r A r
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Les potentiels: potentiel scalaire électrique

Nous pouvons écrire

( ) ( ) ( )j jω ω∇× = − = − ∇×E r B r A r

Donc ( ) ( ) ( ) ( )( ) 0j jω ω∇× + ∇× = ∇× + =E r A r E r A r

comme le rotationnel d'un gradient est toujours nul, nous
pouvons définir V tel que 

( ) ( ) ( )V jω−∇ = +r E r A r
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Courants source et courants diffractés

Jsrc
E(r)

H(r)

( ) ( )
( ) ( ) ( )src

j

j

ωµ

ωε

∇× = −

∇× = +

E r H r

H r E r J r
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Courants source et courants diffractés

( ) ( )
( ) ( ) ( )tot

j

j

ωµ

ωε

∇× = −

∇× = +

E r H r

H r E r J r

Jsrc
E(r)

H(r)
Jind
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Courants sources et courants diffractés
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

tot

ind src

src

src

src

T src

T

j

j

j

j

j

j
j

j

j

ωµ

ωε

ωε

ωε σ

ωε σ

σω ε
ω

ωε

σε ε
ω

∇× = −

∇× = +

∇× = + +

∇× = + +

∇× = + +

 
∇× = + + 

 
∇× = +

 = − 
 

E r H r

H r E r J r

H r E r J r J r

H r E r E r J r

H r E r J r

H r E r J r

H r E r J r

est appelé permittivité globale 

pour ne pas alourdir la notation, on va continuer à écrire
( ) ( )
( ) ( ) ( )

j

j

ωµ

ωε

∇× = −

∇× = +

E r H r

H r E r J r
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Courants source et courants diffractés

pour ne pas alourdir la notation, on va continuer à écrire
( ) ( )
( ) ( ) ( )

j

j

ωµ

ωε

∇× = −

∇× = +

E r H r

H r E r J r

mais il sera sous entendu que 
( ) ( )src=J r J r

' ''j jσε ε ε
ω

 = − − 
 
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Solutions des équations de Maxwell: les équations 
d'onde

dans une région sans source, nous pouvons écrie
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

2

2 20

j

j

j

ωµ

ωε

ωµ ω εµ

∇× = −

∇× =

∇×∇× = − ∇× =

∇×∇× = ∇ ∇⋅ −∇ = −∇

E r H r

H r E r

E r H r E r

E r E r E r E r
et ainsi obtenir l'équation d'onde classique 

( ) ( )2 2 0 ;k k ω εµ∇ + = =E r

Pour le champ magnétique, on obtient de manière similaire

( ) ( )2 2 0 ;k k ω εµ∇ + = =H r



In
tro

du
ct

io
n 

au
x 

m
ic

ro
on

de
s 

et
 a

nt
en

ne
s

© A.K. Skrivervik    23

La polarisation des ondes
L'orientation du champ électrique est appelée polarisation
Elle peut être elliptique, circulaire ou linéaire. En effet, en toute
généralité, un champ électrique a la forme suivante au point r:

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

0 0

0

2 cos cos

cos

0 cos / 4 sin

x x x y y y

z z z

t E t E t

E t

t t T t

ω ϕ ω ϕ

ω ϕ

ω ω

= + + + +
+ 

= +

E e e

e

E E E

avec ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0

0 0 0

0 2 cos cos cos

/ 4 2 sin sin sin

x x x y y y z z z

x x x y y y z z z

E E E

T E E E

ϕ ϕ ϕ

ϕ ϕ ϕ

 = + + 
 = − + + 

E e e e

E e e e

ou en termes de phaseurs : ( )

( )

0 Re 2

/ 4 Im 2T

 =  
 = −  

E E

E E
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La polarisation des ondes
E(0) et E(T/4) sont les axes conjugués d'une ellipse. Trois
situations sont possibles:
• E(0) et E(T/4) sont colinéaires, et la polarisation est linéaire:

• E(0) et E(T/4) sont orthogonaux et de même longueur, 
et la polarisation est circulaire:

( ) ( )
2

0 / 4 0

0

T× =

≠

E E

E

( ) ( )
( ) ( )
0 / 4 0

0 / 4 0

ce qui est équivalent à
0

T

T

⋅ =

= ≠

⋅ =

E E

E E

E E
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Polarisation linéaire

t

E

E

E
E

https://www.saburchill.com/physics/chapters2/0040.html
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Polarisation circulaire

E

K

RIGHT HAND CIRCULAR
POLARIZATION

E

K

LEFT HAND CIRCULAR
POLARIZATION

H

H

https://en.wikipedia.org/wiki/Circular_polarization
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Polarisation elliptique

E

2b

2a

https://nanopdf.com/download/la-lumiere-2_pdf



Lignes de 
transmission
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Modèle incremental (1)

∆z

z

i(z,t)

u(z,t)

∆z

i(z,t)

u(z,t)
R∆z L∆z

G∆z C∆z

i(z+∆z,t)

u(z+∆z,t)
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Modèle incremental (2)

Kirchhoff': ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,
, , , 0

,
, , , 0

i z t
v z t R zi z t L z v z z t

t
v z z t

i z t G zv z z t C z i z z t
t

∂
− ∆ − ∆ − + ∆ =

∂
∂ + ∆

− ∆ + ∆ − ∆ − + ∆ =
∂

( ) ( ) ( )

( ) ( ) ( )

, ,
,

, ,
,

v z t i z t
Ri z t L

z t
i z t u z t

Gv z t C
z t

∂ ∂
= − −

∂ ∂
∂ ∂

= − −
∂ ∂

( ) ( ) ( )

( ) ( ) ( )

dV z
R j L I z

dz
dI z

G j C V z
dz

ω

ω

= − +

= − +
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Modèle incremental (3)

( ) ( )

( ) ( )

2
2

2

2
2

2

0

0

d V z
V z

dz
d I z

I z
dz

γ

γ

− =

− =

avec

( )( )j R j L G j Cγ α β ω ω= + = + +
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Modèle incremental (4)

Solutions :
( )
( )

0 0

0 0

e e

e e

z z

z z

V z V V

I z I I

γ γ

γ γ

+ − −

+ − −

= +

= +

ou :
( ) ( )0 0e ez zI z V V

R j L
γ γγ

ω
+ − −= −

+

( ) 0 e ez zo

o o

V VI z
Z Z

γ γ
+ −

−= − avec o
R j L R j LZ

G j C
ω ω

γ ω
+ +

= =
+



In
tro

du
ct

io
n 

au
x 

m
ic

ro
on

de
s 

et
 a

nt
en

ne
s

© A.K. Skrivervik    33

Modèle incremental (5)

Longueur d’onde:  λ=2π/β

Vitesse de phase: vϕ=dz/dt=ω/β=λf
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Lignes sans pertes

o

j j LC

LZ
C

γ β ω= =

=

( )

( )

0 0

0 0
0 0

e e

e e e e

j z j z

j z j z j z j z

o o

V z V V

V VI z I I
Z Z

β β

β β β β

+ − −

+ −
+ − − −

= +

= + = −

2 2
LC

π πλ
β ω

= =
1dzv

dt LCϕ
ω
β

= = =
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Lignes terminées (1)

ZL

IL
V(z), I(z)

Zo, β
VL

z

0
l

( )
( )

0 0
0

0 0

0
0L

V V VZ Z
I V V

+ −

+ −
+

= =
−

0 0
L o

L o

Z ZV V
Z Z

− +−
=

+

0

0

L o

L o

V Z Z
Z ZV

−

+
−

Γ = =
+
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Lignes terminées (2)

( ) ( )
( ) ( )

0

0

e e

e e

j z j z

j z j z

o

V z V

VI z
Z

β β

β β

+ −

+
−

= + Γ

= −Γ

( ) ( ) ( )
2

2*Re 1
o

av
o

V
P V z I z

Z

+
 = = − Γ 

( ) ( )
2

2* * 2 2Re Re 1 e e
o j z j z

av
o

V
P V z I z

Z
β β

+
−  = = −Γ +Γ − Γ    
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Lignes terminées (3)

Pertes de désadaptation: 1020log dBRL = − Γ
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Lignes terminées: Impédance d’entrée

ZL

IL
V(z), I(z)

Zo, β
VL
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o j l j l

j l
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V l
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V
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V
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β β

β β
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+ −

+ −

−

−

−
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=
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Lignes terminées: Impédance d’entrée

Donc, un utilisant

( ) ( )
( ) ( ) 0

e e cos sin
cos sine e

tan
tan

j l j l
L o L o L o

in o oj l j l LL o L o

L o
o

o L

Z Z Z Z Z l jZ lZ Z Z
Z l jZ lZ Z Z Z

Z jZ lZ
Z jZ l

β β

β β
β β
β β

β
β

−

−
+ + − +

= =
++ − −

+
=

+

0

0

L o

L o

V Z Z
Z ZV

−

+
−

Γ = =
+
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Ligne terminée par un court circuit

IL
V(z), I(z)

Zo, β VL=0

z
0-l

( ) ( )
( ) ( )

0 0

0 0

e e 2 sin

2e e cos

j z j z

j z j z

o o

V z V jV z

V VI z z
Z Z

β β

β β

β

β

+ − +

+ +
−

= − = −

= + = tanin oZ jZ zβ=
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Ligne terminée par un court circuit

z

z

z

V(z)

I(z)

X(z)
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Ligne terminée par un circuit ouvert

IL=0V(z), I(z)

VL

( ) ( )
( ) ( )

0 0

0 0

e e 2 cos

2e e sin

j z j z

j z j z

o o

V z V V z

V jVI z z
Z Z

β β

β β

β

β

+ − +

+ +
−

= + =

−
= − =

cotin oZ jZ zβ= −
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Ligne terminée par un circuit ouvert

z

z

z

V(z)

I(z)

X(z)
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