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=prL Equations de Maxwell

Domaine temporel
V x E(t.r) = 83;”') VD) = p(t.r)
V x H(1,r) = 51);”’) CJ(tr)  V-B(Lr) = 0
E(t,r) champ électrique H(t,r) champ magnetique

D(t,r) champ de deplacement B(,r)
Pr)  densité de charge J(.r) densité de courant
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=prL Equations de Maxwell

Domaine temporel

On obtient I'équation de continuite en prenant la divergence
de la 3°Me équation et en utilisant la 2¢me:

ap(t,r

> )+v J(t,r)=0
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=r-. Domaine fréquentiel: phaseurs

t u(t,z)= \/EU(z)cos[a)t + go(z)}
w=2xf

; mais NOUsS pouvons aussi écrire u(t,z)=Re[ﬁ_(z)ef“”]
8 . * o\ z
2 et puisque Re[z]= Z+ZZ U(z)=U(z)e"™



=r-. Domaine fréquentiel: phaseurs

8u(t,u) R

— Re[\/zja)(_/(z)ejw]
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=rr. Domaine fréquentiel

Valeur moyenne de u?, énergie électrique moyenne

t+1

%!u(z,z)u(z,z)dz:
%CT[Q(ZW LU (2)e U ()™ +U*(2)e ™ Jd
S [ @ (e v (U (o
mais T e dt =+ 2]1@ e jT =+ 2;@ [eﬁja’t = a’t] =0 car o [=2r
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=rr. Domaine fréquentiel

valeur moyenne de la puissance

dans la theorie des lignes de transmission, la puissance

au temps t est donnee par  p(,z)=u(t,z)i(z,z)
La pmssance moyenne est donc donnee par

(p(t.2)) =—j (t,2)i(t,2)dt

1 t+T
2T °

1 t+T
:E

[U(z)e’w +(_]*(Z)e Jet }[[(z)e’m +£*(z)e_j”t]dt
U(z)I z)ezf”dt+—jU* #(z2)e " dt

37 UL () (a) (o o
Les 2 premieres integrales sont nulles, il reste donc

(p(t:2)) %[Q (2)1*(2)+U*(2)L(z) |=Re[U(z)-L*(z) |=Re[ () |=P(z) _

Introduction aux microondes et antennes



=r-. Domaine fréquentiel: équations de Maxwell

les équations de Maxwell deviennent

Vx]j(r) = —jwl_?(r)

et I'equation de continuite

V-J(r)+ jop(r)=0
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=rrL Changement de notation

o D
A partir de ce slide, les phaseurs ne seront plus soulignes,
le contexte étant suffisant pour determiner leur qualite de
xphaseur y
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=rr. Milieux linéaires et isotropes

Dans un milieu lineaire et isotrope, nous avons vu que
D(r):é‘E(r)
B(r) :,uH(r)
J(r)zaE(r)

Ce sont les relations constitutives

¢ et u sont en genéeral complexes et définissent le milieu.
Leur parties imaginaires representent les pertes dans le

milieu. E=e-Jje
p=pu'-ju"
vient de |la causalité
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=p=L Propriétés électriques et magnétiques du vide

1
JEo ks

i
Hy
\ &

1, =perméabilité du vide =4710"

= ¢, = vitesse de la lumiéere dans le vide = 3-10°[m / s

= Z, = 1mpedance du vide= 1207

¢, =permittivité du vide =8.854-107"
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=rr. Milieux linéaires et isotropes

Finalement, on obtient

VxE(r) :—ja),uH(r)
VxH(r) :ja)gE(r)+J(r)

V-E(r)=2(r)

V-H(r):O
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=prL Conditions aux limites

n est le vecteur unitaire
) normal a la surface allant
du milieu 2 au milieu 1.
J, est un eventuel courant
de surface [A/m]
nx(Ez—El)zo
nx(Hz—Hl)zJ

A)

(1)

(2)

Introduction aux microondes et antennes

© A.K. Skrivervik 13



=prL Energies électrique et magnétique

valeur moyenne de la densite d'energie électrique:

w =¢E-E [J/m3]
valeur moyenne de la densite d'energie magnetique:

w o=uH -H [J/mﬂ

Vecteur de Poynting: valeur moyenne du flux de puissance

S=ExH* [W/mﬂ
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=r-. Théoréme de Poynting

En utilisant les equations de Maxwell, en integrant sur
un volume v entoure d'une surface s, on obtient le
Theoreme de Poynting

deS-nJrja)jdv(we+wm):—jva-E

\) V V
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=prL Les potentiels: potentiel vecteur magnétique

Considérons I'equation de Maxwell sur I'induction magnétique

V-B(r):O

or V-VxA(r) 0

On peut donc écrire B(r)=VxA(r)ou A(r) est appelé le
vecteur potentiel mangetique. A(r) n'est pas unique on pourrai
le remplacer par 4'(r)= 4(r)+v® ou ® est une fonction arbitraire
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=prL Les potentiels: potentiel scalaire électrique

Nous pouvons écrire

VxE(r):—ja)B(r):—ja)VxA(r)

Donc VxE(r)+ja)V><A(r):VX(E(F)+ja)A(r))=O

comme le rotationnel d'un gradient est toujours nul, nous
pouvons definir V tel que

Introduction aux microondes et antennes
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=pr. Courants source et courants diffractés

(,.>
R

VxE r —ja),uH( )
VxH(r) ]a)gE( )+Jsrc(r)

(r)
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=pr. Courants source et courants diffractés

VxE(r) = —ja),uH(r)
VxH(r) = ja)gE(r)+Jmt (r)
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=prL Courants sources et courants diffractés

VxE(r)z—]a),uH(r
VxH(r)zja)gE(r)+Jmt(r)
VxH(r)zja)gE(r)nLde (r)+JS,,C(r)
VxH(r)zja)gE(r)+aE(r +Jsrc(r)
VxH(r)z(ja)nga)E r)+JS,,C(r)
VxH(r)=ja)(5+]%jE(r)+Jm(r)
VxH(r):ja)gTE(r)nLJm(r)

.O

‘f;j est appele permittivite globale

5
1
M

pour ne pas alourdir la notation, on va continuer a ecrire
VxE(r)z—ja),uH(r)
VxH(r):ja)gE(r)+J(r)
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=pr. Courants source et courants diffractés

pour ne pas alourdir la notation, on va continuer a ecrire
VxE(r):—ja),uH(r)
VxH(r):ja)gE(r)+J(r)

mais Il sera sous entendu que
J(r)=J,, (r)
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=p-. Solutions des équations de Maxwell: les équations
d'onde
dans une region sans source, nous pouvons ecrie
VxE(r):—ja),uH(r)
VxH(r):ja)gE(r)
VxVxE(r)=—jouV xH(r)=wo’cuE(r)
VxVxE(r):V(V-E(r))—VZE(r):O—VzE(r)
et ainsi obtenir I'equation d'onde classique
(V2+k2)E(r):O . k=w\eu

Pour le champ magnetique, on obtient de maniere similaire

(V2+k2)H(r):O . k=l
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=rrL La polarisation des ondes

L'orientation du champ electrique est appelee polarisation
Elle peut étre elliptique, circulaire ou lineaire. En effet, en toute
generalite, un champ electrique a la forme suivante au point r:

E(t) = \/E[exEOx cos(a)t + gpx)+eyEOy cos(a)t + gpy)+

e.E, cos(wt+¢,) ]|
E(t)=E(0)cos(wt)+ E(T/4)sin(wt)

avec E(0)= \/E[exEOx cos(@, )+e E,, cos(goy ) +e,E,_ cos(o, )]

E(T / 4) = —\/E[exEOx sin(gox ) + eyEOy sin(goy ) +e k. sin(gpz )]
ou en termes de phaseurs : E(o):Re[ﬁE]

Introduction aux microondes et antennes
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=rrL La polarisation des ondes

E(O) et E(T/4) sont les axes conjugués d'une ellipse. Trois
situations sont possibles:
* E(O) et E(T/4) sont colineaires, et la polarisation est lineaire:

E(O)xE(T/4):O
<E2>¢O

* E(O) et E(T/4) sont orthogonaux et de méme longueur,
et la polarisation est circulaire:  E(0)-E(T/4)=0
E(0)=E(T/4)#0
ce qui est equivalent a
E-E=0
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=prL Polarisation linéaire

Electric field
(in x-y plane)

E

E t
o
Z E
> E
! — direction of propagation
Magnetic field
(in x-z plane)

https://www.saburchill.com/physics/chapters2/0040.html
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=prL Polansation circulaire

A A
E E
AN g H
. e . e
H

RIGHT HAND CIRCULAR LEFT HAND CIRCULAR
POLARIZATION POLARIZATION

https://en.wikipedia.org/wiki/Circular_polarization
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=prL Polarisation elliptique

E 2b -

https://nanopdf.com/download/la-lumiere-2_pdf

2a
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Introduction aux microondes et antennes

Modeéle incremental (1)

iz
=) -
u(z,t)
—( - —
i_z,»)  p 1(z+Az,t)
RAz LAz
u(z,t) GAz| | == CAz| u(z+Az,t)
Y \
Az
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=Pi-L

Introduction aux microondes et antennes

Modeéle incremental (2)

51’(2,

Kirchhoff':  v(z,t)—RAzi(z,t)- LAz > ) v(z+Az,t)=0
i(z,t)—Gsz(z+Az,t)—CAZav(z;AZ’t) i(z+AZ,t):O
ov| z, | Oi| z, z
(az Do hi(es)- (az t) dVd( ) _(R+joL)1(:)
Oil z,t oulz,t T -
(az --Gr(z)-C (at ) dljz)}( +joC)V (2)
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=PFL Modele incremental (3)

daveC

;/:a+j,b’:\/(R+ja)L)(G+ja)C)
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=Pi-L
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Modéle incremental (4)

Solutions :
Vz)=Vy e +Vy e”

I(z)=1ye "+ 1y e*

ou
[(Z) = 7/ (VO+ 6_7Z—VO_ 67/2)
R+ jwlL
Voo ., Vo
Hz)=" e 7o e avec Z=-

rivervi



=PFL Modéle incremental (5)

Longueur d'onde: A=271/3

Vitesse de phase: vo=dz/dt=w/p=Af
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Lignes sans pertes

=Pr-L

Sauusjue ]38 S8PUOOIDIW XNE UOIJONPOIU|
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cprL Lignes terminées (1)

— ) 7, VO W+,
_I_ —_
7 VU7 1) v5 -7
OaB \V
) )
V_ _ ZL _ZO _|_
1 % Yz vz, !
0
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=Pi-L

Introduction aux microondes et antennes

Vo (e_j'BZ+Fej'BZ)

V_()Jr(e_jﬂz_ re/P? )

2

Re

Lignes terminées (2)

1-T e 2/P7 T ezfﬂz—\r\z_
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— Lignes terminées (3)

Pertes de desadaptation: gz =-20log;,|r| dB
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=Pi-L

Introduction aux microondes et antennes

Lignes terminées: Impédance d’entrée

V(2), 1(z) V(=)
IL Lin =
—) () 1(-1)
|_> AO ZQ: B OVV | B Z VO+ (e]ﬂl+re_]ﬂl)
Zin Oy (ejﬂl_pe—fﬁl)
e — _, 1+Te /2P
0 e /A
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=PFL Lignes terminées: Impédance d’entrée

. A/
Donc, un utilisant T=-%=>£_"0

VO+ ZL +ZO
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=PFL Ligne terminée par un court circuit

VoL

= Y

40 Zo, B O'VL:‘O
1 O‘

Viz)=Vy (e_j'BZ—ej'BZ) =2V sin Bz

T Z=JjZ,tan pz
cos [z

](Z):I;i(e—j,ﬁz_l_ej,ﬁz):

2V,
7

O 0,
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=Pi-L
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Ligne terminée par un court circuit

Vil

V(z)

il

it

e et

Lt

UIHHE

iy

i
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=PFL Ligne terminée par un circuit ouvert

V(2), I(z)

—~ L
40 Lo, OLVL
1 | i

0

Viz)=Vy (e_jﬂz+ej'82) =2V} cos Bz

e

sin 5z
~ p

1(2)= 2 (e 0ol

O O
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Ligne terminée par un circuit ouvert

SRR g
b V%

Vil %
Vi

SUFANN rHE g
i HEEE

=Pi-L
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